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ABSTRACT 

 
Subsistence Strategy Tradeoffs in Long-Term Population Stability Over the Past 6,000 

Years  

 

by 

Darcy A. Bird, Master of Science 

Utah State University, 2019 

 

Major Professor: Dr. Jacob C. Freeman 
Department: Sociology, Social Work, and Anthropology 
 

 

I conduct the first analysis of long-term human population stability in North America 

using large radiocarbon data sets. Questions regarding population stability among animals and 

plants are fundamental to population ecology, yet no anthropological research has addressed long 

term human population stability. This is an important knowledge gap, because a species’ 

population stability can have implications for its risk of extinction and for the stability of the 

ecological community in which it lives. I use archaeological and paleoclimatological data to 

compare long term population stability with subsistence strategy and climate stability between 

6,000 and 300 B.P. I conduct a coarse-grained analysis in order to better understand general 

trends regarding population stability in North America as a first step that future fine-grained 

studies may build upon.  

To conduct this research, I used radiocarbon dates as representative of relative population 

change in North America. I gathered almost 40,000 radiocarbon dates within the United States 
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and Canada using the Canadian Archaeological Radiocarbon Database (CARD) and sample this 

dataset with a 5° latitude/longitude grid. I generated summed probability distributions (SPD’s) 

that I bin at three different scales (50, 100, and 200-years). I calculated the absolute value of the 

differences between sequential bins, which are averaged to generate the 50-, 100-, and 200-year 

population stability measurements. I then took the inverse of this measurement to estimate 

population stability.  

My results demonstrate that agricultural sequences have smaller population changes than 

hunter-gatherer sequences in general, but they also experience rare, extreme population swings 

not seen among hunter-gatherers. I propose that agriculturalists trade increased population density 

and stability over most time-scales for greater vulnerability to large population collapses, while 

hunter-gatherer systems remain flexible and are less vulnerable to large population changes. I 

found that population stability shows a weak relationship with climate stability. Climate stability 

may have an indirect effect on long-term population stability, and climate shocks may be buffered 

by other aspects of subsistence strategies prior to affecting human demography.  

 (142 pages) 
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PUBLIC ABSTRACT 

 

Subsistence Strategy Tradeoffs in Long-Term Population Stability Over the Past 6,000 

Years  

Darcy A. Bird 

 

I conduct the first comparative analysis of long term human population stability in North 

America. Questions regarding population stability among animals and plants are fundamental to 

population ecology, yet no anthropological research has addressed human population stability. 

This is an important knowledge gap, because a species’ population stability can have 

implications for its risk of extinction and for the stability of the ecological community in 

which it lives. I use archaeological and paleoclimatological data to compare long term population 

stability with subsistence strategy and climate stability over 6,000 years. I conduct my analysis on 

a large scale to better understand general trends between population stability, subsistence 

strategy, and climate stability. I found that agricultural sequences fluctuate less than hunter-

gatherer sequences in general, but they also experience rare, extreme population swings not seen 

among hunter-gatherers. I suggest that agriculturalists are more vulnerable to population collapses 

because of their increased population densities. I found that population stability shows a weak 

relationship with climate stability. Climate stability may have an indirect effect on long-term 

population stability.  
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Chapter I: Introduction1 

The stability of animal populations over time – the change in populations from 

year-to-year, decade-to-decade, or century-to-century – is fundamental to understanding 

both the risk of local populations to extinction and the health and functioning of 

ecological communities (e.g., Blaustein et al. 1994; Murdoch 1966; Murdoch and Oaten 

1975; Rall et al. 2010). In theory, the stability of human populations over time could also 

affect the risk of both local population extinctions among small-scale societies, especially 

mobile foragers with low population density (Hamilton et al. 2009), and the economic 

performance in larger scale societies. For instance, large irrigation systems rely on a 

dependable supply of cooperative labor, however mobilized, to clean and maintain canals 

(Hunt et al. 2005). If populations fluctuated wildly from decade to decade, such a system 

would be difficult to maintain because a steady supply of labor would be highly 

uncertain. Agricultural production may then decline over the long term as individuals 

abandoned large canals in favor of self-reliant strategies to buffer against the risk of labor 

shortfalls. Yet, few studies have ever attempted to explain the stability of human 

populations (e.g., Hamilton et al. 2009). In this paper, I make a first attempt to study the 

long-term stability—fluctuation over decades to centuries—of human populations by 

pushing the bounds of paleodemography using the dates as data approach. 

Dates as data refers to a broad approach to using large samples of radiocarbon 

dates to study changes in human population over time (Rick 1987). Most dates as data 

research over the last 20 years has attempted to study the effects of sampling biases, 

possible biases introduced by taphonomy and preservation, and biases introduced by 

                                                             
1 This thesis will be submitted to academic journals with co-authors pending minor revisions. 
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cultural processes to reconstruct trends in human population over thousands of years or 

correlate episodes of population growth and/or collapse with particular episodes of 

climate and subsistence change (Bevan et al. 2017; Downey et al. 2016; Freeman et al. 

2018b; Jørgensen 2018; Kelly et al. 2013; Kuzmin and Keates 2005; Louderback et al. 

2010; Peros et al. 2010; Rick 1987; Riede 2009; Shennan et al. 2013; Smith et al. 2008, 

2015; Spangler 2000; Surovell and Brantingham 2007; Surovell et al. 2009; Timpson et 

al. 2014; Zahid et al. 2016). This paper is part of a growing literature that builds upon 

previous studies in an attempt to use radiocarbon records to study basic population 

ecology processes in human societies from a comparative perspective (e.g., Freeman et 

al. 2018a; Peros et al. 2010; Shennan et al. 2013; Zahid et al. 2016;) and, in particular, the 

neglected process of population stability.  

I treat radiocarbon records as reflective of energy expenditure that correlates 

positively with population size (Freeman et al. 2018b), and I propose that the more 

radiocarbon records fluctuate on the decadal to centennial scale, the less stable 

populations and economies were over time. I specifically hypothesize that locations in 

which populations eventually adopted agriculture display more population stability than 

those where populations remained hunter-gatherers, but also agriculturalists experienced 

large fluctuations (outlier booms and busts) seldom experienced by hunter-gatherers. To 

evaluate this hypothesis, I study the relationships among climate, population stability, and 

the presence of agriculture in prehistoric North America over the last 6,000 years. The 

North American continent provides an excellent opportunity to study such relationships, 

because much of the continent was populated by both hunter-gatherer and agricultural 

societies over the last 6,000 years. I conduct a coarse-grained analysis, which zooms out 
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from the particulars of any given location to investigate large-scale patterns (Flack 2013 

et al.; Ortman et al. 2018). This does not deny the importance of local variability in any 

way; coarse graining simply provides an additional perspective for answering difficult 

questions about complex population processes.  

In the remainder of this thesis, I first lay out my hypothesis for the potential 

effects of subsistence on the stability of human populations over the last roughly 6,000 

years. I then go through my methodology in detail, including the process I used to select 

sampling units, gather and clean radiocarbon data, calculate stability measurements, 

calculate both temperature and precipitation stability, and assign agriculture values. I then 

present the results of my analysis, and, finally, I interpret these results in the context of 

my hypothesis, compare my conclusions to previous studies, and suggest future research.  
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Chapter II: Literature Review 

Few researchers have investigated the stability of human populations over 

decades to centuries, thus a dearth of anthropological literature exists on the topic. This is 

partially because it has been difficult to construct datasets useful to estimate changes in 

human populations over long time-scales (hundreds to thousands of years). The goal of 

this chapter is to provide a hypothesis to guide my investigation of human population 

stability. Drawing on a dynamical systems model of foraging and farming, I propose that 

human societies face a long-term performance–vulnerability tradeoff in their 

demographic systems generated by the adoption of agriculture. The basic idea is that 

agriculture increases the potential carrying capacity of environments, which leads to 

larger population densities and more stable populations most of the time (higher 

performance) but also increases the vulnerability of agricultural populations to rare, large 

fluctuations (booms and busts) greater than the rare, large fluctuations experienced by 

hunter-gatherers. 

Given the dearth of literature on the stability of human populations, the literature 

on the stability of animal populations provides a starting point for creating expectations 

about the stability of human populations. Research on the population ecology of non-

human animals demonstrates two basic results. First, the fluctuation of animal 

populations forms a highly skewed distribution, often well fit by a power law distribution 

(e.g., Allen et al. 2001; Halley 1996; Keitt and Stanley 1998; Marquet et al. 2005). This 

means that most increases and decreases in population are small, but occasionally, 

populations experience large booms and/or busts. Thus, I expect that human population 

fluctuations also display similar right skewing, with many small population changes and 
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a few large fluctuations.  

Second, the stability of animal populations results from a complex interaction of 

climate forcing on the resources for a particular species, internal population processes, 

life history characteristics, and social processes (e.g., Hidalgo et al. 2011; Jenouvrier et 

al. 2003; Murdoch 1966). Thus, holding human life history constant, I expect complex 

relationships among climate, technological organization, and the stability of human 

populations. Because the study of human population stability is nascent, I do not attempt 

to formally model the interaction of all of these processes. Rather, I develop a qualitative, 

narrative hypothesis for the stability of human populations using a dynamical systems 

model developed by Freeman et al. (2015) that contrasts foragers and farmer-foragers. 

Freeman et al. (2015) illustrate the consequences of adopting maize for the 

maximum population density, food supply, and vulnerability of a social-ecological 

system to environmental change in an idealized forest ecosystem. In this ecosystem, 

human foragers may either harvest seeds from the trees of the forest, or they invest in 

maize agriculture by clearing the forest. The main dynamics of the model relevant here 

are as follows. The adoption of maize first makes the system resilient to environmental 

change by operating as a buffer, and it drastically increases potential carrying capacity. If 

one increases the population density parameter of the model, farmer-foragers can 

maintain an optimal harvest of seeds and maize, but the entire system becomes vulnerable 

to climate variation that may initiate a transformation of the system into a degraded state. 

For example, when a drought hits the system, maize and tree seed productivity are 

depressed. Individuals respond by clearing more forest to grow more maize to stabilize 

the intake of food in the short run. The newly denuded forest produces fewer seeds, 
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which leads to a greater need to grow more maize (Freeman et al. 2015). This positive 

feedback loop eventually causes the system to collapse.  

Two qualitative insights for population stability follow from the model results 

described above. First, we should expect agriculture to increase how well individuals 

produce food, both increasing the productivity and stability of a supply of food most of 

the time. This may be done by increasing the supply rate of food production (as in the 

model) or through storage. This expectation fits well with conventional anthropological 

wisdom that farming provides an opportunity for increasing the productivity of an 

environment and decreasing the risk of production shortfall—leading to higher carrying 

capacity (e.g., Freeman 2016, Glassow 1978; Roosevelt 1984). This carrying capacity 

increase is reflected by population densities recoded in the ethnographic record. The 

maximum population density among ethnographically documented hunter-gatherers is 

between 3.39 and 5 people per square kilometer (Binford 2001; Kelly 2013; Roscoe 

2009), while small-scale, subsistence agriculturalists can live at population densities of 

200-300 people per square kilometer (Netting 1993). Though ethnographically recorded 

population densities fit this expectation, no one has ever compared the stability of 

populations among archaeological sequences that become agricultural vs. those that 

remain hunter-gatherers. I fill this empirical knowledge gap with this study.  

Second, though adopting agriculture improves the performance of food 

production and, thus, should increase population density and stability in the medium 

term, agriculture also transforms ecosystems and may make ecosystems more vulnerable 

to climate variation that was once easily absorbed. In fact, this is a key lesson of dynamic 

systems models of human-resource interactions in general (e.g., Anderies 2006; Barnes et 
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al. 2017; Freeman and Anderies 2012; Freeman et al. 2015; Lima 2014), and is consistent 

with the idea of a “rigidity trap” from resilience theory. A rigidity trap occurs when a 

system is “stuck,” because individuals must spend all of their time and effort maintaining 

what they have, which reduces the opportunity to adapt and innovate (Hegmon et al. 

2008; Holling et al. 2002; Marston 2015). Thus, although I expect agriculture to stabilize 

a food supply and, consequently, the populations of agricultural sequences relative to 

those that remain hunter-gatherers, we should also expect agricultural sequences to 

display rare larger booms and busts than hunter-gatherer sequences. This is because 

agriculture suddenly increases the carrying capacity of an environment much more than 

foraging innovations and, on average, agricultural societies should be more vulnerable to 

falling into “rigidity traps” that lead to very large collapses. 

Several anecdotal lines of evidence are consistent with my second expectation 

that agriculturalists experience more intense and rare booms and busts than hunter-

gatherer sequences. For example, the adoption of agriculture caused several major 

biological changes in human societies, specifically health decline, physiological stress 

increase, nutrition decline, and birth rate increase, among others (Lambert 2009; Larsen 

1995; Roosevelt 1984). Notably, one change is sudden population growth following the 

adoption of agriculture (Bocquet-Appel and Bar-Yosef 2008; Gignoux et al. 2011; 

Lambert 2009; Larsen 1995; Li et al. 2009; Shennan et al. 2013), which may suggest a 

fitness-health tradeoff wherein populations are larger but less healthy.  

Further, researchers using the dates as data approach observe population booms 

and busts following the adoption of agriculture (Bernabeu Aubán et al. 2016; Shennan et 

al. 2013; Timpson et al. 2014). For example, with the adoption of agriculture, 
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archaeologists observe one or several population boom and bust cycles in northwestern 

Europe (Gronenborn et al. 2014; Shennan et al. 2013; Timpson et al. 2014; Warden et al. 

2017). Some researchers argue that this boom-bust cycle is a result of climatic effects 

(Gronenborn et al. 2014; Warden et al. 2017) especially when populations are high 

(Gronenborn et al. 2014), while others argue for internal social-ecological processes, such 

as fertility transitions or land cover changes and the degradation of agricultural habitat 

(Shennan et al. 2013; Timpson et al. 2014). Again, while these studies suggest that 

agriculture may be related to a particularly large boom or bust episode in population, no 

one has ever systematically compared the long-term population stability of archaeological 

regions that become agricultural with those that remained hunter-gatherers. 

In sum, research into the long-term stability of human populations is rare, 

especially on archaeological time-scales. However, insights from animal ecology and a 

dynamical systems model that contrasts foragers and farmers within the same ecosystem 

provides a narrative hypothesis useful to guide my analysis. I propose that, like all other 

known animal populations, human populations experience many small changes and a few 

large changes in population and economy size. In addition, I expect that most of the time 

archaeological sequences where agriculture was adopted experience greater stability than 

hunter-gatherer sequences because, ideally, agriculture improves the productivity and 

stability of a supply of food, which leads to larger and more stable population densities. 

Adopting agriculture also suddenly increases the potential carry capacity of an 

environment, which may lead to population booms, and the increasing reliance on 

agriculture can also transform ecosystems to such an extent that human populations 

become vulnerable to a type of rigidity trap and experience very large collapses. Thus, I 
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expect that when rare but large booms and busts occur, these are more intense in 

agricultural sequences than among hunter-gatherer sequences. I will test this hypothesis 

in the subsequent chapters. 
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Chapter III: Data and Methods 

Paleodemographic studies have estimated changes in human populations by using 

tree rings (Berry 1982; Berry and Benson 2010; Bocinsky et al. 2016), human mortality 

profiles from burials (Bocquet-Appel and Bar-Yosef 2008; Kohler et al. 2008), human 

fecal stanols (White et al. 2019), site catchment analysis (Li 2015; Roper 1979), changes 

in house size or number (Brown 1987, Gronenborn et al. 2014; Kolb 1985), and 

radiocarbon time-series—dates as data (Barton et al. 2017; Bevan et al. 2017; Chaput et 

al. 2015; Downey et al. 2016; Freeman et al. 2018a; Jorgenson 2018; Kelly et al. 2013; 

Kuzmin and Keates 2005; Louderback et al. 2010; Peros et al. 2010; Rick 1987; Riede 

2009; Robinson et al. 2019; Shennan et al. 2013; Smith et al. 2008; Spangler 2000; 

Timpson et al. 2014; Zahid et al. 2016; See Chamberlain 2006 for an overview of 

archaeological paleodemography). The dates as data approach is the most widely 

applicable of these approaches as radiocarbon data are more widespread and accessible 

than, for example, burials (restricted to larger societies) and tree-ring cutting dates 

(restricted to deserts where wood preserves). The basic concept is that each dated 

archaeological artifact presumably represents past human activity, which allows the 

archaeologist to assess relative occupation history in a given region (Rick 1987). While 

these data are not without their faults (see Appendix I section 1), radiocarbon databases 

provide the opportunity to conduct comparative analyses essential to answer basic 

population ecology questions about prehistoric North America.  

I analyze 5,700 years of calibrated radiocarbon ages from North America to 

estimate changes in population. Over the past decade there has been an increase in the 

analysis of radiocarbon date frequencies to estimate changes in human population 
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densities (Kelly et al. 2013; Louderback et al. 2010; Rick 1987; Shennan et al. 2013) and 

to analyze population growth, decline, and movement (Bevan et al. 2017; Downey et al. 

2016; Jørgensen 2018; Kuzmin and Keates 2005; Peros et al. 2010; Rick 1987; Riede 

2009; Smith et al. 2008, 2015; Spangler 2000; Timpson et al. 2014; Zahid et al. 2016). 

Freeman et al. (2018a) argue that radiocarbon ages can be usefully thought of as an 

estimate of energy consumption, which scales sub-linearly with population size. Energy 

consumption also has a relationship with economic complexity: as economic complexity 

increases, additional energy is necessary to coordinate populations via exchange and fund 

critical infrastructure (Freeman et al. 2018b). Thus, we treat large samples of radiocarbon 

ages as a proxy for energy consumption and, indirectly, population density and economic 

activity in a given area. 

Radiocarbon Data 

To study the stability of human demographic systems between 6,000 and 300 

years cal. BP, I gathered radiocarbon ages from the Canadian Archaeological 

Radiocarbon Database (CARD) and from the recent NSF-funded project Populating a 

Radiocarbon Database of North America (PI: Robert L. Kelly). I used the following 

methods to clean the data. I removed all non-archaeological dates (bulk sediments, 

charcoal not associated with human deposits from geological test trenches, etc). Despite 

only studying calibrated ages 6,000-300 BP, I retained all uncalibrated radiocarbon dates 

8,000-0 14C BP to minimize edge effects (see Appendix I section 1 for details). I removed 

all radiocarbon ages missing latitude and longitude. I verified that each radiocarbon age 

comes from a listed radiocarbon lab according to a list provided by Radiocarbon: An 

International Journal of Cosmogenic Isotope Research (Radiocarbon 2018). I ensured 
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each age was only represented once in the dataset by checking and removing the 

duplicates. If the locational information was different and the 14C date and standard 

deviation were the same, but the two duplicates were in the same box, I removed one 

arbitrarily to count one date within the box. In some cases, the duplicate lab numbers 

were not in the same sampling unit or they had the same 14C date and/or standard 

deviation. In this case, I removed both duplicates. After these steps were taken, I had a 

dataset of 40,017 radiocarbon ages with unique lab numbers within the accepted 

parameters (Figure 1).  

Stability Measurement Methodology 

Once I processed the data, I analyze population stability within the United States 

and Canada by creating 5° grid squares overlaying the continental landmass (Figure 1). 

This method divided the radiocarbon dataset into sampling units. I used a sampling grid 

rather than culture areas in order to minimize sampling bias that may be inadvertently 

Figure 1: Continental scale with 196 black 5° small boxes and their specific radiocarbon 
age locations, also in black. Country and state boundaries are delineated in red. 
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introduced by externally defined cultural areas that change in shape and size over time. I 

chose 5° boxes as this best balanced the need for sample units with sufficient numbers of 

radiocarbon ages (>199) and developing reasonable sized sampling units to capture 

variation in climate that may affect population stability. In general, larger sample units 

smooth out climate variation but lead to larger sample sizes of ages. Smaller sample units 

allow us to better measure climate differences, but lead to smaller samples of radiocarbon 

ages that may limit a stability analysis. I selected only boxes with 200 or more 

radiocarbon ages to ensure each sampling unit had enough dates to produce an SPD with 

a reasonable spread of ages. In short, this is one step taken to minimize the potential 

effects of sample size on the stability of an SPD. With 5° boxes, there are 40 sampling 

units with 200 or more radiocarbon ages. I examine whether the number of radiocarbon 

ages within each sample unit affects the results and found no bias created by differences 

in sample size on my results (see Appendix I section 2).  

Within each sampling unit, I calibrated the radiocarbon ages using the Intcal13 

database (Reimer et al. 2013) then generated a summed probability distribution (SPD) 

(See Appendix I section 6 for code; Williams 2012). I used the R programming package, 

‘rcarbon’ (Bevan and Crema 2018) and its function, binPrep, to control the aggregation 

of radiocarbon ages from the same site to control for potential over-sampling (Timpson et 

al. 2014). I averaged all radiocarbon ages within 100 years of each other from the same 

site. For each SPD, I summed the annual probabilities into 50, 100, and 200-year bins to 

study the stability of the records over multiple time-scales (see Appendix 1 section 5 for 

all SPDs). I chose these three time scales to maintain and study variability in the record. 

Smaller bin sizes are more likely affected by the calibration curve, while larger bin sizes 
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completely obscure the variability we need to study population and economic stability.  

For each of the three time scales, I calculated the first difference values between 

each bin using the following equation: 

SPDdiff=SPDt+1-SPDt 

Where SPDdiff is the difference between the SPD value from one time step in the future 

(t+1) and the SPD value at time t (Figure 2). This method detrends the SPD’s (removes 

distortions such as a change in the mean over time) and preserves the change in 

amplitude values around the mean trend of the SPD. Each positive first difference value 

demonstrates an SPD increase (i.e., boom), while each negative first difference value 

represents a decrease (i.e., bust). To calculate SPD stability per sampling unit, I took the 

absolute value of the amplitudes and calculated both average and median values. Taking 

the inverse of each box’s mean or median absolute amplitude value provides a 

measurement of SPD stability and an estimate for population stability within each box. I 

also calculated the average increase (or boom) for each box by calculating an average of 

all positive first difference values and the average decrease (or bust) by averaging all 

negative first difference values. I assumed these increases and decreases in the first 

difference values represent increases and decreases in population and economy size 

within each sampling unit, with the understanding that the calibration curve should affect 

agriculture and hunter-gatherer systems in the same way. Therefore, any difference 

between these subsistence strategies’ SPD changes should be a result of population 

change, not an artifact of the calibration curve (but see Bamforth and Grund 2012).  

I also considered the entire distribution of amplitude values via density plots to 

understand the range of variation between the two subsistence strategies. I plotted these 
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amplitude values together, taking the absolute value to exclusively view each first 

difference value, and separately, which allowed me to compare the size of population 

booms and busts between the two subsistence strategies. I calculated the median and 

mean amplitude value for the two subsistence strategies to compare their values 

independently of the sampling units. 

Figure 2: Calculating the first difference values using sampling unit #18. The first 
difference values are calculated from subtracting the next time step’s SPD value from the 
present time step: the dots are colored red if the SPD value of time step t+1 is less than 
time step t, representing a decrease in the SPD. Green dots represent first difference 
values that are positive, so the SPD value at time step t+1 is higher than at time step t. 
The graph depicts the SPD values for sampling unit #18, located in northern Arizona and 
southern Utah at the 50-year bin size. A: SPD values graphed against time for one 
sampling unit with first difference values coded accordingly. Note the exponential trend 
of increasing SPD values through time. B: First difference values graphed against time. 
All green dots are positive first difference values while all red dots are negative first 
difference values. All the green dots are above 0 on the y-axis, while all the red dots are 
below zero. The average difference (or absolute value of first difference values) is 
0.000911, while the average decrease is -0.001321 and the increase is 0.000705. 

Average absolute value of first difference values = 0.000911 
Average decrease = -0.001321 (n=38) 
Average increase = 0.000705 (n=76) 
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Climate Stability Methodology  

I used Fordham et al. (2017)’s PaleoView to model climate data for the past 6,000 

years within North America. PaleoView’s climate data comes from the TRaCE21ka 

experiment (Liu et al. 2009, 2014; Otto-Bliesner et al. 2014), a Community Climate 

System Model, version 3 (CCSM3), and a global coupled atmosphere-ocean-sea ice-land 

general circulation model (AOGCM) with ~3.75° latitude-longitude resolution on land 

and sea and ~3° resolution over the ocean. PaleoView re-grids the climate data to provide 

a 2.5° x 2.5° resolution on a global scale 20,050 BC to 1989 AD, and it can be 

downscaled to smaller resolutions if necessary. PaleoView is currently the only source 

that provides comparable paleoclimate estimates on a continental scale. The model 

provides a starting point for making comparisons between projected paleoclimate 

stability and radiocarbon stability. 

I extracted the temperature and precipitation data from PaleoView in the form of 

10 year averages for each of the 2.5° raster squares. I then calculated the coefficient of 

variation (CV) for each raster cell with the following formulas: 

 
CV= 𝜎𝜎

𝜇𝜇
 

 
And: 

 

𝜎𝜎 =  �
∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 

 
Where μ is the mean of the time series of each raster cell, σ is the standard 

deviation calculated for each raster cell, and x represents each raster cell in the time 



www.manaraa.com

17 
 

 

series. To provide one stability measurement for each sampling unit, I followed a 

multistep process to convert raw data to temperature or climate stability. First, I average 

the four contributing 10 year 2.5° climate rasters to generate average 5° sampling unit 

temperature and precipitation levels on the 10 year scale. I bin these 10 year intervals at 

three time scales (50-year, 100-year, and 200-year), which I use to calculate the mean and 

standard deviation and therefore the coefficient of variation. I calculate stability by taking 

the inverse of the coefficient of variation (1/CV). Finally, I average all of the stability 

measurements for each sampling unit at each time scale. Each sampling unit has a 

temperature and precipitation stability measurement at the 50-year, 100-year, and 200-

year time scale using this methodology. 

Subsistence Strategy Methodology 

Finally, I assigned a binary agriculture variable based on presence or absence of 

agriculture prehistorically within the sampling areas, with a focus on where the 

radiocarbon samples were coming from (Figure 3; see Appendix 1 section 5). These 

values were assigned based on documented evidence of the presence of agriculture in the 

review literature of archaeological records of North America (Jennings 1968; Kopper 

1986; Pauketat 2015; Snow 1989; Thomas 1999). Some of the sampling units occur in 

“border land" areas characterized by a late adoption of agriculture (~800 BP or later) with 

hunter-gatherers still occupying large portions of the sampling unit. I conducted 

additional research of these areas to try and parse the extent of agriculture in the area with 

an emphasis on the effect of agriculture on the daily life of those living there, including 

hunter-gatherers, as well as comparing when the majority of my radiocarbon sample for 

these areas came from (see Appendix I section 3 for borderland statements, Appendix I 
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section 4 for a false positive check). This coarse-grained approach of assigning a binary 

agriculture variable allows me to identify general trends in places that adopted agriculture 

at some point during their occupation versus those locations that barely or never adopted 

agriculture. Future work finely parsing these areas will depend on the accumulation of 

more radiocarbon dates to avoid problems associated with very small samples.  

 I compared the two subsistence strategies across all three time scales in several 

ways. First, I built box plots of the amplitude means and compared the distributions via a 

Wilcox rank sum test to evaluate the null hypothesis that the distributions of observations 

are the same. I then generated density plots of all amplitude values in order to observe the 

differences in detrended SPD first difference means, medians, standard deviation, and 

skewness between the two subsistence strategies. I also analyzed the relationship between 

long-term population stability and climate stability (via temperature and precipitation 

stability) at three time scales controlling for differences based on subsistence strategy.   

Figure 3: Map demonstrating the locations of the boxes with more than 200 radiocarbon 
dates and their affiliated subsistence strategy assignation.  
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Chapter IV: Results 

I hypothesized that human societies face a long-term performance—vulnerability 

tradeoff in their demographic systems generated by the adoption of agriculture relative to 

societies that remain hunter-gatherers. In other words, I expected both hunter-gatherer 

and agricultural sequences to display right skewed distributions of changes in 

radiocarbon (an estimate of population). However, I also expected agricultural sequences 

to have lower mean population stability than hunter-gatherers because of large outlier 

booms and busts but a higher median stability than hunter-gatherer sequences because 

agriculture improves the stability of a food supply most of the time.  

I find that sample units where agriculture was adopted display lower mean 

population stability than the sample units that remained hunter-gatherers throughout the 

5,700 year sequences. However, hunter-gatherer sample units have lower median 

population stability than agricultural sampling units. I note these relationships at all three 

time scales (50-, 100-, and 200-year) and across different levels of climate stability. The 

results support my hypothesis that agriculture initiates a performance—vulnerability 

tradeoff in human–resource systems.  

Subsistence Strategy and SPD Stability 

Agricultural sequences display a lower mean stability than sequences that 

remained hunter-gatherers. This indicates that, on average, agriculturalists are less stable 

than hunter-gatherers. Figure 4 displays box-plots of mean population stability (inverse of 

average absolute value of the booms and busts), increase (booms), and decrease (busts), 

as estimated by fluctuations in SPD values. In Figure 4A-C, across the 50-, 100- and 200-

year time scales, agricultural sequences display lower mean population stability than  
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Figure 4: These box-plots demonstrate the mean values for each sampling unit. A-C: 
Mean population stability distribution. D-F: The mean boom distributions. H-J: The mean 
bust distributions. 
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sequences where populations remained hunter-gatherers. The difference in mean 

population stability is statistically significant at all three time scales. 

When comparing the means of SPD increases and decreases separately, I find that 

mean population booms are significantly higher among agricultural sequences at all three 

time scales (Figure 4D-F). Similarly, agricultural sequences display larger mean busts 

than hunter-gatherer sequences at all three time scales (though only statistically 

significant at p<0.05 at the 200 year time scale, Figure 4G-I).  

It is important to recall that the plots in Figure 4 compare the mean amplitudes of 

each given sequence within each sampling unit. While agricultural sequences display less 

stability on average than hunter-gatherer sequences, hunter-gatherer sequences actually 

have lower median population stability estimates than agricultural sequences. For 

instance, Figure 5 compares the distribution of SPD fluctuations from agriculturalist 

Sampling Unit #32 (SU#32 located in southeast South Dakota, northeast Nebraska, and 

western Iowa) and hunter-gatherer Sampling Unit #17 (SU#17 located in southwest 

Nevada and southeast California). Both distributions display right skewing. Most of the 

time, SPD changes are very small, and sequences experience infrequent large changes 

(either positive or negative). In this case, the SU#32 density plot is more right-skewed 

and has more outliers. The greater degree of skewing and longer tail in SU#32 leads to a 

greater mean value of amplitude of change than SU#17. However, SU#17 has a larger 

median amplitude of SPD fluctuation. This is consistent with my proposal that hunter-

gatherer sequences are less stable than agricultural sequences most of the time, but 

agricultural sequences display rare, extreme population changes not observed among 

hunter-gatherer sequences that inflate the means of these sequences.  
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Table 1 and Figure 6 illustrate this pattern in general. Note, in Table 1 hunter- 

gatherer sequences have larger median amplitudes of change, but agricultural sequences 

have larger mean amplitudes and standard deviations. Agriculturalists also have more 

positive first difference values suggesting that they experience more long-term growth 

and fewer population declines than hunter-gatherer sequences. This pattern holds across 

all three time scales (Table 1). 

Figure 6 displays the distributions of SPD fluctuations among all hunter-gatherer 

and agriculturalist sequences at 50, 100, and 200-year time scales (see Appendix I, 

section 5 for graphs and skewness tables for just SPD increases and decreases). Figure 6  

Figure 5: Density plots of two sampling units, #17 (located in southwest Nevada and 
southeast California) on top and #32 (located in southeast South Dakota, northeast 
Nebraska, and western Iowa) on bottom. #17 was occupied by hunter-gatherers 
between 6,000 and 300 cal BP, while people living in #32 adopted agriculture at some 
point. The solid line represents the median and the dashed line the mean. #32 is more 
skewed by outlier population changes than #17, pulling the mean to the right. 
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Figure 6: Density plots displaying absolute value of first difference values at the (A) 50-
year, (B) 100-year, and (C) 200-year time scales. Sampling units that remained hunter-
gatherers for the entire 6,000-year sequence have amplitudes in light blue, while orange 
represents sampling units that adopted agriculture at some point during the 6,000 
years. Solid vertical lines mark the median value while the dashed lines mark the mean. 
At all three time scales, hunter-gatherers (blue) have a higher median and lower mean 
than agriculturalists (orange). 
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illustrates that agricultural sequences have a longer tail that stretches out to the right more  

than hunter-gatherer sequences. The long tail of the agricultural sequences pulls the mean 

to the right. At the same time, the distribution of SPD fluctuations is more steeply peaked 

at very small values among agriculture sequences than among hunter-gatherer sequences. 

This pulls the median value of agricultural sequences more to the left of the distribution 

than among hunter-gatherer sequences. In short, most of the time agricultural sequences 

display more stability than hunter-gatherer sequences, but the agricultural sequences 

experience very large changes in outlier populations and in the economy that are rarely 

observed in the hunter-gatherer sequences.  

 

 

Climate Stability and SPD Stability 

 Figure 7 illustrates the relationship between climate stability (i.e., temperature 

and precipitation stabilities) and mean radiocarbon stability among hunter-gatherer and 

agricultural sequences. In general, there are weak relationships between measures of 

Table 1. Statistical properties for absolute value of first difference SPD trends for each 
of the subsistence strategies at all three time scales.  
Hunter-gather results 
Time-scale n % boom Median Mean SD Skewness 
 50-year bins 2373 55.3 0.0004 0.0012 0.0023 3.948 
 100-year bins 1176 54.1 0.0017 0.0037 0.0059 3.219 
 200-year bins 
 

567 59.1 0.0050 0.0109 
 

0.0182 2.256 

Agriculturalist results 
Time-scale n % boom Median Mean SD Skewness 
 50-year bins 2147 59.4 0.0002 0.0013 0.0035 5.936 
 100-year bins 1176 59.6 0.0012 0.0044 0.0095 4.656 
 200-year bins 513 64.1 0.0038 0.0148 

 
0.0029 3.840 
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climate stability and the stability of radiocarbon records over time. There are two 

exceptions. (1) Among hunter-gatherer sequences, radiocarbon stability has a humped 

relationship with temperature stability (Figure 7A, C, and E). This suggests that in both 

Figure 7: The left column (A, C, E) displays the relationship at all three time scales 
between precipitation stability and respective mean population stability (i.e. 50-year 
population stability compared with 50-year precipitation stability) while the right 
column shows the relationship between temperature stability and mean population 
stability.  



www.manaraa.com

26 
 

 

extreme environments where temperatures fluctuate wildly from decade to decade, and in 

locations where temperature is relatively predictable over long periods of time, hunter-

gatherer radiocarbon records also vary more over time. Radiocarbon stability peaks in 

climates with moderate temperature stability among hunter-gatherer sequences. (2) 

Agricultural sequences only exist above a temperature stability threshold (Figure 7A, C, 

and E).  

Agriculturalists and hunter-gatherers occupy the same range of precipitation 

stabilities (Figure 7B, D, and F). Both subsistence strategies display very weak 

relationships with precipitation stability: as precipitation stability increases, radiocarbon 

stability appears to vary randomly.  

In sum, relationships between climate stability and SPD stability are weak, 

overall, and most pronounced between hunter-gatherer sequences and temperature 

stability, especially at the 50-year scale. Most importantly, the differences in mean SPD 

stability between hunter-gatherer and agricultural sequences remain consistent even when 

controlling for climate stability (the blue dots are, on average, below the red triangles in 

Figure 7). The same goes for median values of SPD stability; agricultural sequences have 

lower values than hunter-gatherer sequences regardless of climate stability (see Appendix 

I section 5).  
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Chapter V: Discussion and Conclusions 

In this paper, I have attempted to study the basic process of population stability 

among human societies. Population stability is widely studied among non-human animals 

because population stability can have important implications for the stability of 

ecological communities and the risk of extinction for the animals themselves. The 

stability of human populations may also have significant consequences for humans, both 

for the long-term growth of our economies and the risk of population collapse in certain 

regions. Thus, investigating the ecological dynamics that underlie the stability of human 

populations is an important topic of research. As a first attempt to study human 

population stability, I have pushed the bounds of the dates-as-data approach to human 

population reconstruction. I used radiocarbon data to represent population and economic 

change in the past. If radiocarbon is representative of energy consumption in the past and 

energy consumption has a relationship with population size (Freeman et al. 2018b), 

fluctuations in the radiocarbon SPD should represent, all else equal, fluctuations in past 

populations and/or economies.  

My results reveal patterns consistent with the idea that the adoption of agriculture 

generates a demographic performance–vulnerability tradeoff among human societies. (1) 

Most of the time, agricultural areas display more stability than hunter-gatherer regions. 

This suggests that human populations who adopt agriculture experience more stable 

populations and economies most of the time (higher performance). (2) However, 

agriculturalist radiocarbon sequences experience large, outlier booms and busts in their 

economies and populations. Such extreme outliers are rare among populations that 

remained hunter-gatherers, and this is consistent with the idea that agriculturalists 
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transform landscapes in such a way that they are more vulnerable to a kind of rigidity 

trap.   

A rigidity trap occurs when individuals within socio-environmental systems are so 

locked into their current strategies that innovation cannot occur fast enough to keep up 

with environmental change. Societies in such a situation continue investing in their 

current strategies even when these strategies are no longer profitable or even appropriate 

given the environmental conditions. The end of a rigidity trap is marked by a collapse. 

The extreme agriculturalist busts may be reflective of a post-rigidity trap collapse. The 

population of these areas may collapse through emigration and/or mortality.  

Shennan et al. (2013) suggest that, contemporaneous with the adoption of 

agriculture, populations in northwestern Europe experienced sudden population booms 

followed by population busts, or population instability. My results suggest that the 

relationship between agriculture and long-term population stability is perhaps more 

general. Agricultural sequences in North America have smaller population changes and 

are therefore more stable than hunter-gatherer sequences, but agricultural sequences also 

experience infrequent and extreme population booms and busts on a scale never 

experienced by hunter-gatherer sequences. This may occur immediately following the 

adoption of agriculture, or the outlier booms and busts may occur millennia after the 

adoption of agriculture. It may be locally variable when agricultural populations 

experience the rare outlier booms and, especially, busts, but they will experience these at 

some point.  

Finally, I calculated average temperature stability and precipitation stability for 

each sampling unit over three time scales and compared these values to the mean and 
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median values of SPD stability over the same time scale. Hunter-gatherer population 

stability has a humped relationship with temperature stability: population increasingly 

stabilizes as temperature stability increases until a point after which population stability 

decreases. This suggests that there may be an optimal temperature stability environment 

for hunter-gatherer populations that maximizes the stability of hunter-gatherer 

demography and economy. However, as demonstrated in this study, climate stability does 

not swamp out the effects of subsistence strategy on the stability of hunter-gatherer and 

agricultural sequences. Evidence of the performance-vulnerability tradeoffs is evident 

across different climates.  

External factors such as climate variability are not to be ignored, but their role in 

affecting population stability should probably be understood through the lens of internal 

social factors. Temperature variability may contribute to the selection of subsistence 

strategy, but the subsistence strategy appears to have a more important role in long-term 

population stability. Based on the coarse-grained scale of analysis used in this study, 

precipitation variability does not contribute to subsistence strategy selection, but fine-

grained studies may find different results. 

Internal and external factors therefore likely work interdependently within the 

system. Humans occupy a space with a set resource base initially able to absorb external 

shocks (such as climate shifts). As their population increases, however, they put 

increasing strain on their resource base, which increases their vulnerability to external 

shocks. When an adequately large external shock hits a sufficiently vulnerable human 

system, the system can no longer absorb these shocks and instead collapses (Anderies 

2006; Barnes et al. 2017; Freeman and Anderies 2012; Freeman et al. 2015; Lima 2014). 
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In this way, a large population with a strained resource base may be less capable of 

dealing with external shocks than one less intensively exploiting their ecosystem.  

Much research has gone into understanding the changes within a system once 

human societies adopted agriculture, but little research has directly compared the large-

scale paleodemographic variation between agriculturalists and hunter-gatherers (but see 

Zahid et al. 2016 for a comparison of growth rates between subsistence strategies). We 

suggest that the relationship between these three variables is complex and interdependent.  

Future directions for this research may focus on change over time in population 

stability after the adoption of agriculture: for example, a study focusing on the severity of 

population booms and busts relative to how long populations have practiced agriculture. 

Agriculturalists may experience increasing population stability following the adoption of 

agriculture, but at the same time become increasingly susceptible to large outlier busts 

through time as the agricultural system accumulates landscape capital vulnerable to 

unexpected climate changes. Similarly, social factors may drive population stability more 

than subsistence strategy. Socially stratified and sedentary coastal hunter-gatherer-fishers 

may, for example, have population sizes and stability levels more similar to those of 

agriculturalists than to mobile hunter-gatherers in xeric regions. 

I also suggest further research placing population stability within a resilience 

theory framework. An analysis comparing the synchrony of external shocks and 

population busts may focus on systematic changes contemporaneous with the population 

bust (see Gronenborn et al. 2014 for an example among the LBK culture in western 

central Europe). A systematic subsistence intensification contemporaneous with a 

population bust may result in a reduced ability to deal with external shocks in the future. 
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Quantification of external shocks relative to internal rigidity may help us to understand 

the size characteristics of population collapse (see Hegmon et al. 2008 for a comparison 

of society rigidity to social transformation and collapse).  

Future studies may also use a similar coarse-grained analysis on a larger (i.e., 

global) or smaller scale. Changing the scale will allow different analyses of the 

relationship between past human populations and external factors, including biodiversity 

and vegetation regimes, pathogen stress, and small-scale social stress. Similarly, 

modifying the coarse-grained methodology to reflect ecological and geographic zones 

may reveal more about local patterns of movement and the effect of migration and 

fission/fusion on population stability (see Freeman et al. 2017 for a look at biogeography 

and social connectedness on the Texas Coastal Plain).  

Pairing paleodemographic methodologies may reveal more about past populations 

than using one method alone. Radiocarbon by itself reveals information about 

radiocarbon ages associated with archaeological remains on the landscape. Site count 

analysis, dendrochronology, and ceramic typologies can be linked to radiocarbon to 

reveal more about social change. Site count analysis may, for instance, reveal increased 

population density where the number of sites decreased but radiocarbon calibration 

curves increase. Dendrochronology of structures reveals economic expansion that, 

coupled with radiocarbon, may reveal periods of social expansion. Similarly, ceramic 

typologies reveal information about individuality and inter-societal trade. 

Finally, more nuanced estimates of commitment to agriculture may improve our 

understanding of the stages of agricultural investment relative to population stability. 

Assigning an ordinal variable that ranks levels of investment in agriculture on different 
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portions of a time series would refine the relationship between the stability of societies 

and agriculture. This research focuses on the eventuality of agriculture adoption, rather 

than the moment and intensity of agriculture adoption, which may obscure the change in 

patterns as agriculture was adopted. 

Conclusion 

I hypothesized that in locations where populations adopted agriculture, those 

populations unknowingly initiated a performance-vulnerability tradeoff. To evaluate this 

hypothesis, I analyzed the relationship between climate, long-term population stability, 

and subsistence strategy in North America between 6,000 and 300 cal BP. Consistent 

with a performance-vulnerability tradeoff, I found that agriculturalists are more stable 

than hunter-gatherers in general, but experience extreme unprecedented population 

changes unseen by hunter-gatherer societies. This study is the first attempt to investigate 

long-term human population stability on a large scale and pushes the boundaries of 

radiocarbon dates-as-data analysis. This research contributes to the growing literature that 

uses the dates-as-data approach to study basic population ecology processes among 

human societies. Investigating population ecology processes via archaeological data can 

inform researchers about the ways in which humans are similar and different to other 

species and improve our understanding of the consequences of key changes in human 

ecology over the millennia.  
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Appendix I: Supplemental Information 

In this supplemental document, I provide additional analyses that support the 

main conclusions of the manuscript. First, I address the potential relevance of taphonomic 

correction and other biases possible in radiocarbon analyses. Then I investigate the 

potential effects of radiocarbon sample size on my results. Third, I provide a summary of 

my borderland binary agriculture variables. Fourth, I quantify the likelihood that the 

mean differences in SPD stability observed between agricultural and hunter-gatherer 

sequences are due to chance. Finally, I present additional analyses that demonstrate that 

agricultural sequences have larger SPD busts than hunter-gatherer sequences. 

In total, I find buttressing support for the conclusion that agricultural sequences 

display more stability most of the time, but larger, infrequent booms and busts. 
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1. Radiocarbon Interpretations and Taphonomy 

A current debate within archaeology focuses on the representativeness of 

radiocarbon dates (or dendrochronology dates) of prehistoric populations and economic 

activity. I argued in this paper that radiocarbon does not need to directly represent 

population: in fact, I use Freeman et al.’s (2018b) argument that radiocarbon data 

represents energy expenditure, which has a relationship with people.  

Additional concerns about the use of radiocarbon data to represent past 

populations focus on several types of bias: taphonomic bias and sampling bias are two 

major concerns with a dataset as large as ours. Taphonomic bias is defined as “biases 

introduced by processes which destroy the archaeological and/or geological record” 

(Surovell and Brantingham 2007:1869). Essentially, older archaeological remains are 

more likely to be destroyed than younger archaeological remains, as they have had more 

time to be exposed to destructive processes. While an equation exists to correct for 

taphonomic bias (Surovell et al. 2009), the authors of the study warned against using this 

equation thoughtlessly. The equation is more likely to over-correct dates in the past 1,000 

years, of which 10,471 dates of our 40,017 (26.2%) total dates are 1,000 years 14C BP or 

younger. We also have no reason to suspect that taphonomic destruction is occurring 

uniformly across our data set, especially as many of our sampling units cover large 

swathes of depositional and erosional environment. Finally, transforming our SPD’s 

using this transformative equation will not change the results: by adjusting all SPD’s in 

the same way, we would only be over-emphasizing some time periods and under-

emphasizing others in a way that further removes our data from their original contexts. 

As mentioned in the paper itself, we attempted to minimize the effect of over-



www.manaraa.com

51 
 

 

sampling by averaging all dates within 100 years of each other within the same site using 

rcarbon’s binPrep function. We also attempted to minimize the effect of undersampling. 

Undersampling is most common during the historic period (post-1650 AD) in North 

America. I completed my analysis on dates from 6,000 – 300 cal BP or 4050 BC – 1650 

AD, to minimize this issue. 

Edge effects are also a potential problem in the analysis of summed probability 

distributions (SPDs). Edge effects are artificial probability drop-off’s at the edge of an 

SPD caused by where the dates aren’t calibrating to. A common way to remove edge 

effects to ensure the SPD values analyzed is simply to remove the edges of the SPD. I 

gathered uncalibrated radiocarbon dates from 8,000 – 0 14 C14 and conducted analysis on 

calibrated dates between 6,000 and 300 cal BP.  

To check for both edge effects and undersampling, which is more common in 

recent years, I removed more recent bins at the 50-year time scale and graphed the 

absolute value of the first differences between the two subsistence strategies until the 

results changed. Trimming recent dates until 650 cal BP (1300 AD) gives hunter-

gatherers and agriculturalists comparable means (0.00093 vs 0.00094 respectively), but 

agriculturalists still had lower medians (0.00042 vs 0.00026). This demonstrates that 

undersampling and edge effects are likely not issues for my study. 
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2. Sample Size 

There is only a very weak relationship between the mean and median values of 

radiocarbon stability from sampling units and the number of radiocarbon ages within in 

respective unit. Radiocarbon age sample size, thus, does not appear to impact our mean 

and median stability measures, and my results are not likely simply a function of 

radiocarbon sample size.   

As discussed in the body of the paper, for a sampling unit to be considered, it had 

to have at least 200 radiocarbon dates within it. Forty sampling units met this criterion. 

The minimum number of dates within a sampling unit is 205 (SU#113, southeast Alaska), 

maximum is 3,111 (SU#30, central Wyoming), with a mean of 871 radiocarbon dates per 

box and a median of 574 radiocarbon dates per box. The sample size data are right-

skewed, so we logged them prior to graphing (Figure A1).  

 I investigated whether the sample size of radiocarbon ages within the 40 sample 

units impacted the mean and median stability measurement by graphing the logged 

number of radiocarbon dates within each sampling unit against the mean and the median 

radiocarbon stability value of each sample box. I ran linear regression models of the 

number of ages on radiocarbon stability measures. Table A1 illustrates the regression 

coefficients of the number of ages regressed on mean and median stability measures. In 

each case, the slope of the relationship between number of ages and stability measures is 

NOT significantly different from 0.  



www.manaraa.com

53 
 

 

 

 

 

Table A1. Regression analysis results for Figure A1A-F, demonstrating the relationship 
between the logged number of ages and stability (mean and median) at all three time scales. 
Scale Independent Variable Coefficient SE t-value p-value 
50-year mean Log number of ages 44.94 49.17 0.94 0.37 
100-year mean Log number of ages 15.37 14.77 1.04 0.31 
200-year mean Log number of ages 6.64 6.85 0.97 0.34 
50-year median Log number of ages 116.7 323.9 0.36 0.72 
100-year 
median 

Log number of ages 42.52 85.37 0.50 0.62 

200-year 
median 

Log number of ages 18.46 22.58 0.82 0.42 
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Figure A1: This figure demonstrates the relationship between logged radiocarbon stability 
(mean A-C, median D-F) and logged number of radiocarbon dates within each box at all three 
time scales (50-year A, D; 100-year D, E; and 200-year C, F. All three figures show very weak 
positive relationships between number of dates and population stability within each box. As 
Table 1 demonstrates, the modelled line is not statistically different from a line with a zero 
slope. 
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3. Assignment of Agriculture ID Variable 

I assigned a binary agriculture variable based on presence or absence of 

agriculture prehistorically within the sampling areas (Figure A2), with a focus on where 

the radiocarbon samples were coming from, based on documented evidence of the 

presence or absence of agriculture in the review literature of archaeological records of 

North America (Jennings 1968; Kopper 1986; Pauketat 2015; Snow 1989; Thomas 1999). 

Some locations, such as those in the American Southwest and the Adena culture core in 

Ohio, were easily assigned “1” for containing agriculture. Others, such as the entirety of 

California, Oregon, Washington, Idaho, and Nevada, were just as easily assigned “0” for 

absence of agriculture. Others were not so easily assigned. SU#10, #25, #29, #30, #31, 

and #37 all occupy a distinct “border land” zone.  

Figure A2: Map demonstrating the locations of the boxes with more than 200 
radiocarbon dates and their affiliated subsistence strategy assignation. Reprinted here 
for ease of viewing. 
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In order to verify my results regardless of the assignation of these 6 sampling 

units, I removed them entirely from my study to see if their assignations drastically 

changed the results at the 50-year scale. The results are relatively identical (Table A2): 

agriculturalists have a larger percentage their total 50-year bins as population increases 

(“booms”), and agriculturalists also have a lower median, higher mean, higher standard 

deviation, and higher skewness. Removing the 6 borderlands sampling units did decrease 

the hunter-gatherer standard deviation and increase the agriculturalist %boom and 

decrease agriculturalist skewness. This suggests that the addition of the borderlands may 

have made our results slightly less distinct from one another, but the results are still the 

same regardless. The false positive test in Appendix I section 4 also confirms that these 

results are unlikely due to change. 

SU #10 occupies west Texas, including the panhandle, and eastern New Mexico, 

located within the “Plains” region of North America. The sampling unit contains 92 

radiocarbon samples taken from the panhandle, 26 from the Trans-Pecos region, with the 

remaining 1,352 from southeast New Mexico. It does not contain the westernmost tip of 

Table A2. The original 50-year time-scale results with 40 sampling units compared to 
results if 6 borderlands sampling units are removed.  
Original 50-year time-scale results 
Subsistence n % boom Median Mean SD Skewness 
 Hunter-gatherer 2373 55.3 0.0004 0.0012 0.0023 3.948 
 Agriculturalist 2147 59.4 0.0002 0.0013 0.0035 5.936 

 
Results without 6 borderlands sampling units at 50-year time-scale 
Subsistence n % boom Median Mean SD Skewness 
 Hunter-gatherer 2260 55.3 0.0004 0.0010 0.0017 3.976 
 Agriculturalist 1582 61.0 0.0002 0.0012 

 
0.0034 5.760 
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Texas, which was occupied by the Southern Jornada Mogollon (Johnson and Hard 2014). 

The Panhandle does demonstrate widespread maize agriculture around 900 A.D, while 

the Trans-Pecos region south of the panhandle demonstrates large (1.5m+) burned rock 

middens indicating wild plant intensification (Johnson and Hard 2014). Finally, the 

region is at the very edge of the Mogollon cultural tradition, ~200 AD-~1400 AD 

(Thomas 1999). Given sampling unit’s placement in between multiple agriculture 

traditions (including those in Mexico), I assigned it as containing agriculture. 

Next, SU#25 is located in Delaware, Maryland, Virginia, Delaware, northeast 

North Carolina, eastern West Virginia, southwest New Jersey, and about 20 miles into 

southern Pennsylvania. This region is at the very edge of Woodland and Mississippian 

traditions. Notably, agriculturalist Adena cultural material from Ohio has been located in 

these areas, though the culture did not extend this far to the east (Snow 1989). The 

Iroquois peoples to the north (SU #36 mainly) practiced agriculture, while large 

moundbuilding groups occupied the southeast (Kopper 1986). Societies living in modern 

day Virginia practiced agriculture during the middle and late Woodland period ~900AD -

1607 (Egloff and Woodward 2006). Within North Carolina, agriculture was adopted later 

by coastal peoples than those on the inner coast or the Iroquoians on the coastal plain: 

~A.D. 800 on the inner coast, but later than ~A.D. 1400 on the outer coast (Hutchinson 

2002).  I have chosen to label SU #25 as an agriculturalist box due to the whole-hearted 

adoption of late agriculture and the earlier surrounding of agriculture to the north, south, 

and west.  

 SU #29 is located in northern Utah, southern Idaho, and western Wyoming, while 

SU#30 is located in northeastern Utah (around the Uinta Basin), central Wyoming, and 
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northern Colorado. The region is located at the northeastern extent of the Great Basin, the 

northwestern extent of the Colorado Plateau, and over the Snake River Plain in Idaho, 

and on the western extent of the central Plains area. The Fremont people occupied almost 

all of Utah, into southern Idaho and as far west as Ely, Nevada, planting maize, beans, 

and squash in the high desert around 200 B.C. at the earliest until about 1300 A.D. 

(Simms 2008). With this intense farming in mind, I wanted to assign either #29 or #30 as 

agriculturalists. One site, Steinaker Gap, located in the southwestern corner of #30, 

contains Fremont irrigation ditches dating to A.D. 250. Stable isotope analysis from this 

site suggests that a significant portion of the diet was maize, and the site contains bell 

shaped storage pits for maize (Madsen and Simms 1998). Meanwhile, many of the 

Fremont occupants in SU#29 maintained a strong foraging presence throughout most of 

the Fremont period. Therefore, I assigned SU#29 as not having agriculture and SU #30 as 

having agriculture.  

SU #31 is in eastern Wyoming, northwest Nebraska, and southwest South Dakota. 

Wyoming, as mentioned previously, was predominately occupied by hunter-gatherers. 

Eastern Nebraska and South Dakota both contain an agriculture presence as the northwest 

edge of the Plains Village culture who began “rudimentary forms of agriculture” ~1000 

B.C. (Thomas 1999), with a stronger presence at ~A.D. 1000 (Winham and Calbrese 

1998). Nearby Kansas City Hopewell and Middle Woodland sites from northwest Iowa 

demonstrate clear signs of agriculture, including sunflower, squash, marshelder, and 

others (Bozell and Winfrey1994). Archaeologists have found Middle Missouri sites, 

whose occupants received the majority of their calories from both bison and cultivated 

plants, located as far west as the base of the Black Hills in South Dakota dating to ~A.D. 
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1000, though a majority have not been dated and many have conflicting dates (Winham 

and Calbrese 1998). The evidence for agriculture here is scanty but present, with multiple 

authors blaming recovery methods and poor chronology as why agriculture presence is 

uncertain within the area (Winham and Calbrese 1998; Bozell and Winfrey 1994), so I 

have assigned this unit as having agriculture.  

Finally SU#37 is located on the eastern side of the Appalachians including eastern 

New York, much of New England, and portions of northern New Jersey and eastern 

Pennsylvania. To the western side of the Appalachians (mostly SU #36) the Iroquois 

people during the Woodland period practiced agriculture, including corn, beans, squash, 

and pumpkins. (Kopper 1986). New England has maize kernals are present and dated to 

1050+50 14C (Little 2002). Agriculture in eastern New York in the Hudson River Valley 

has been directly dated on maize kernals to 1050+50 14C BP, and excavations of large 

sites within the Hudson River Valley demonstrate a distinct lack of horticulture practice 

~1900 years ago (Brumbach and Bender 2002). Maize agriculture was practiced in the 

Saco River Valley in southwestern Maine at or earlier than 570 14C BP, and seeds and 

grasses affiliated with agriculture are found in this region 1000 years BP (Sidell 2002). 

I’ve assigned this sampling unit as containing agriculture despite the late arrival, as it was 

adopted wholeheartedly when it did arrive. 
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4. Chance of a false positive difference in the mean stability of hunter-gatherer vs. 

agricultural sequences 

To test the significance of the relationship between subsistence strategy and 

radiocarbon stability, we built a model that randomly generated 1,000 presence/absence 

of agriculture values for the 40 sampling units. I then ran Wilcox tests on the 1,000 

values with the stability measurements from all three time-scales. Where the Wilcox tests 

returned p<0.05, I ran a Yule’s Q test to determine if the randomly generated agricultural 

values were similar to our assigned cultural values. Yule’s Q tests range -1 through 1, 

with values closer to 0 representing no association between a significant randomly 

assigned subsistence identifier and our real assigned subsistence identifier. Table 4 

documents the results of the 1,000 iterations. If I assign subsistence identification 

(agriculture present vs. absent) at random to our 40 sample boxes, only 3.5-4.2 % of the 

time is there a significant difference between the means of agricultural and hunter-

gatherer sequences (see Table A3 for results). This indicates there is only a 3.5% and 

4.2% chance that our results reflect a false positive. In fact, most of the random trials that 

replicated the results show a strong association with the real designations of hunter-

Table A3. Results for false positive test, which included random generation and assignation of 
presence or absence of agriculture to pre-existing mean population stability values for the 40 
boxes. 
Time Scale Percent Significant 

Wilcox (p<0.05) 
Mean Absolute Value 
of Yule’s Q  

Median Absolute 
Value of Yule’s Q 

50-year 4.2 (n=42) 0.28 0.20 
100-year 4.2 (n=42) 0.38 0.39 
200-year 3.5 (n=35) 0.39 0.38 
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gatherer vs. agricultural sequences. The mean Yule’s Q column illustrates this result. If 

this were not the case, the average Yule’s Q value would be virtually 0.   

5. Additional Plots and Tables 

 

 

 

 

Table A4. Statistical properties for positive first difference values (Booms) for each of 
the subsistence strategies at all three time scales.  
Hunter-gatherer results 
Time-scale n % Total Median Mean SD Skewness 
 50-year bins 1313 55.3 0.0005 0.0010 0.0016 3.735 
 100-year bins 636 54.1 0.0019 0.0032 0.0039 2.597 
 200-year bins 
 

335 59.1 0.0053 0.0087 
 

0.0097 2.192 

Agriculturalist results 
Time-scale n %Total Median Mean SD Skewness 
 50-year bins 1276 59.4 0.0003 0.0011 0.0024 6.178 
 100-year bins 634 59.6 0.0012 0.0037 0.0071 4.292 
 200-year bins 329 64.1 0.0034 0.0117 

 
0.0211 3.542 

Table A5. Statistical properties for negative first difference values (Busts) for each of the 
subsistence strategies at all three time scales.  
Hunter-gatherer results 
Time-scale n % Total Median Mean SD Skewness 
 50-year bins 1060 44.7 0.0004 0.0011 0.0019 3.965 
 100-year bins 540 45.9 0.0014 0.0031 0.0047 3.583 
 200-year bins 
 

232 40.9 0.0040 0.0072 
 

0.0089 2.359 

Agriculturalist results 
Time-scale n %Total Median Mean SD Skewness 
 50-year bins 871 40.6 0.0002 0.0015 0.0041 5.102 
 100-year bins 430 40.4 0.0010 0.0047 0.0112 4.244 
 200-year bins 184 35.9 0.0029 0.0122 

 
0.0277 3.883 



www.manaraa.com

62 
 

 

 

 

n=1240 
median = 0.0005 
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mean = 0.0012 
 
 
 
 
 
 
 
 

n=620 
median = 0.0019 

mean = 0.0032 
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n=320 
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median = 0.0038 

mean = 0.0209 
 

Figure A3: Density plots displaying population increase values at the (A) 50-year, (B) 100-year, 
and (C) 200-year time scales. Solid vertical lines mark the median value while the dashed lines 
mark the mean. At all three time scales, hunter-gatherers (blue) have the same or higher median 
and lower mean than agriculturalists (orange), demonstrating less skewing among hunter-
gatherer sequences than among agricultural sequences. 
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n=922 
median = 0.0005 

mean = 0.0011 
 
 
 
 
 

n=1005 
median = 0.0005 

mean = 0.0012 
 
 
 
 
 
 
 
 

n=464 
median = 0.0019 

mean = 0.0032 
 
 
 
 
 

n=503 
median = 0.0013 

mean = 0.0037 
 
 
 
 
 
 
 

n=203 
median = 0.0049 

mean = 0.0144 
 
 
 
 
 

n=218 
median = 0.0038 

mean = 0.0209 
 

Figure A4: Density plots displaying population decrease values at the (A) 50-year, (B) 100-year, 
and (C) 200-year time scales. Solid vertical lines mark the median value while the dashed lines 
mark the mean. At all three time scales, hunter-gatherers (blue) have the same or higher median 
population decrease values and lower mean than agriculturalists (orange), demonstrating less 
skewing among hunter-gatherer sequences than among agricultural sequences. 
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Figure A5: The left column (A, C, E) displays the relationship at all three time scales 
between precipitation stability and respective median population stability (i.e. 50-year 
population stability compared with 50-year precipitation stability) while the right 
column shows the relationship between mean temperature stability and median 
population stability.  
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R-Code 

setwd("~/R/THESIS_2/") 
RawData <- read.csv("thesis_radiocarbon_latlongremoved.csv") 
 
library(plyr) 
library(searchable) 
library(reshape) 
library(rcarbon) 
library(ggplot2) 
library(rcarbon) 
library(ggpubr) 
library(zoo) 
library(robustbase) 
library(moments) 
#library(tidyverse) 
#remove.packages(tidyverse) 
#### 1. Extract climate data from Paleoview according to sampling 
units ------ 
 
 
#### 2. Make Directory for all sample units with more than 200 
lab numbers ------- 
Directory <- count(RawData, vars = "Sbox") 
names(Directory) <- c("Sbox", "n") 
Directory<-Directory[!(Directory$n<200),] 
write.csv(Directory, "Directory_Sbox.csv", row.names = FALSE) 
 
#### 3. Calibrate each sampling unit recursively -------- 
 
#Sometimes r treats values within a dataframe in a way you cannot 
use. The lines ensure our calibration will work. 
RawData$date <- as.numeric(RawData$date) 
RawData$sd <- as.numeric(RawData$sd) 
RawData$labnumber <- as.character(RawData$labnumber) 
 
##Turn each sampling unit into a data.frame and make a list of 
them.  
SboxList <- list() 
for(i in 1:length(unique(Directory$Sbox))){ 
  nam <- make.names(paste("Sbox", Directory[i,"Sbox"])) 
  assign(nam, RawData[RawData$Sbox == Directory[i,"Sbox"],]) 
#This line makes a dataframe for each sampling unit 
  SboxList[i] <- 
lapply(make.names(paste("Sbox",Directory[i,"Sbox"])), get)  #this 
makes a list of the sampling units. 
} 
remove(nam) 
remove(i) 
 
Sbox<-read.csv("TARL.csv") 
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cptcal <- calibrate(x = Sbox$date,  errors = Sbox$sd) #This 
calibrates the dates using the default intcal13 
Sboxbins <- binPrep(sites = Sbox$SiteID, ages = Sbox$date, h = 
100) #This bins the values. 
Sboxspd <- spd(x=cptcal, timeRange=c(6000,300), spdnormalised = 
TRUE) #This produces normalized SPD values 
write.csv(Sboxspd,file = paste("Sbox TX.csv")) #This writes the 
SPD values to the working directory, allowing you to view them 
outside of R and pull them back in later. 
 
 
 
##Calibration function for each hemisphere according to the 
different calibration curves 
north <- function(Sbox){ 
  cptcal <- calibrate(x = Sbox$date,  errors = Sbox$sd) #This 
calibrates the dates using the default intcal13 
  Sboxbins <- binPrep(sites = Sbox$SiteID, ages = Sbox$date, h = 
100) #This bins the values. 
  Sboxspd <- spd(x=cptcal, timeRange=c(6000,300), spdnormalised = 
TRUE) #This produces normalized SPD values 
  write.csv(Sboxspd,file = paste("Sbox", Directory[i,"Sbox"], 
".csv")) #This writes the SPD values to the working directory, 
allowing you to view them outside of R and pull them back in 
later. 
} 
 
south <- function(Sbox){ 
  cptcal <- calibrate(x = Sbox$date,  errors = Sbox$sd,calCurves 
= 'shcal13') #This calibrates the dates using the default shcal13 
  Sboxbins <- binPrep(sites = Sbox$SiteID, ages = Sbox$date, h = 
100) #This bins the values. 
  Sboxspd <- spd(x=cptcal, timeRange=c(6000,300), spdnormalised = 
TRUE) #This produces normalized SPD values.   
  write.csv(Norm,file = paste("Sbox", Directory[i,"Sbox"], 
".csv")) #This writes the SPD values to the working directory, 
allowing you to view them outside of R and pull them back in 
later. 
} 
 
##Create a directory to store the SPD results 
dir.create("~/R/THESIS_2/1_Sbox_SPD") 
setwd("~/R/THESIS_2/1_Sbox_SPD") 
 
#Run the code to calibrate recursively, This may take awhile. 
for(i in 1:length(unique(Directory$Sbox))){ 
  if(nrow(data.frame(SboxList[i])) >= 200){ 
     if(RawData$Lat >= 0){ 
      north(data.frame(SboxList[i])) 
    } 
    else{ 
      (south(data.frame(SboxList[i]))) 
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    } 
  } 
} 
 
#Clean the environment. 
rm(list=ls()) 
 
 
#### 4. Recursively bin all SPDs ----- 
setwd("~/R/THESIS_2/1_Sbox_SPD") 
 
temp <- list.files(pattern="*.csv") 
list2env( 
  lapply(setNames(temp, make.names(gsub("*.csv$", "", temp))),  
         read.csv), envir = .GlobalEnv) 
 
files <- list.files(path="./") 
dates <- read.table(files[1], sep=",", header=TRUE)[,11]     # 
gene names 
df    <- do.call(cbind,lapply(files,function(fn)read.table(fn, 
header=TRUE, sep=",")[,12])) 
df2 <- gsub('Sbox', '', files) 
df2 <- sub(' ', '', df2) 
df2 <- sub(' .csv', '', df2) 
colnames(df) <- df2 
df3 <- cbind(dates,df) 
 
dir.create("~/R/THESIS_2/2_Sbox_Bins/") 
setwd("~/R/THESIS_2/2_Sbox_Bins/") 
 
###Sum the spd data at different bin widths 
out10 <- 
rollapply(df3,50,(sum),by=50,by.column=TRUE,align='right') 
out10 <- as.data.frame(out10) 
out10$dates <- ((out10$dates / 50) -25.5) 
write.table(out10, file = "SboxSum50.csv", sep = ",", row.names = 
FALSE) 
 
out20 <- 
rollapply(df3,100,(sum),by=100,by.column=TRUE,align='right') 
out20 <-as.data.frame(out20) 
out20$dates<-((out20$dates/100) - 50.5) 
write.table(out20, file = "SboxSum100.csv", sep = ",", row.names 
= FALSE) 
 
out50 <- 
rollapply(df3,200,(sum),by=200,by.column=TRUE,align='right') 
out50<-as.data.frame(out50) 
out50$dates<-((out50$dates/200)-100.5) 
write.table(out50, file = "SboxSum200.csv", sep = ",", row.names 
= FALSE) 
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rm(list=ls()) 
 
 
#### 5. Calculate First Difference Values ---- 
setwd("~/R/THESIS_2/2_Sbox_Bins/") 
Sum50 <- read.csv("SboxSum50.csv") 
Sum100 <- read.csv("SboxSum100.csv") 
Sum200 <- read.csv("SboxSum200.csv") 
 
setwd("~/R/THESIS_2/") 
Directory <- read.csv("Directory_Sbox.csv") 
 
dir.create("~/R/THESIS_2/3_FirstDiff/") 
setwd("~/R/THESIS_2/3_FirstDiff/") 
 
###Calculate First Difference Values for each time series. Let's 
start with the 50 year time scale 
dates<- Sum50$dates[-c(114)] ##extract the dates for the time 
series 
Sum50 <- Sum50[-c(1)] ###Remove the dates 
Sum50_2 <- Sum50[-c(1),] ###Remove the first row (year 5950 BP) 
rownames(Sum50_2) <- 1:113 ### Renumber row names so we can 
properly subtract 
Sum50 <- Sum50[-c(114),] ### Remove the last row (year 300BP) 
SboxDif50 <- Sum50_2 - Sum50 ### younger SPD values (starting 
with 5900BP) - older SPD values, so positive numbers will 
demonstrate SPD increase, and negative will be decrease. 
SboxDif50<- cbind(dates,SboxDif50) ###Recombine dates with the 
SPD difference values 
SboxDif50[SboxDif50 == 0] <- NA ### All first difference values 
of "0" will be replaced with NA 
remove(Sum50) #Clean up environment 
remove(Sum50_2) #Clean up environment 
remove(dates) 
write.csv(SboxDif50, "SboxDif50.csv", row.names = FALSE) ##Write 
to a csv. 
 
###Let's move on to the 100 year time scale. The only change will 
be how long the dataframe will be, which will affect the math. 
dates<- Sum100$dates[-c(57)] ##extract the dates for the time 
series 
Sum100 <- Sum100[-c(1)] ###Remove the dates 
Sum100_2 <- Sum100[-c(1),] ###Remove the first row (year 5900 BP) 
rownames(Sum100_2) <- 1:56 ### Renumber row names so we can 
properly subtract 
Sum100 <- Sum100[-c(57),] ### Remove the last row (year 300BP) 
SboxDif100 <- Sum100_2 - Sum100 ### younger SPD values (starting 
with 5900BP) - older SPD values, so positive numbers will 
demonstrate SPD increase, and negative will be decrease. 
SboxDif100<- cbind(dates,SboxDif100) ###Recombine dates with the 
SPD difference values 
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SboxDif100[SboxDif100 == 0] <- NA ### All first difference values 
of "0" will be replaced with NA 
remove(Sum100) #Clean up environment 
remove(Sum100_2) #Clean up environment 
remove(dates) #Clean up environment 
write.csv(SboxDif100, "SboxDif100.csv", row.names = FALSE) 
##Write to a csv. 
 
###Finally, let's do the 200 year time scale. 
dates<- Sum200$dates[-c(28)] ##extract the dates for the time 
series 
Sum200 <- Sum200[-c(1)] ###Remove the dates 
Sum200_2 <- Sum200[-c(1),] ###Remove the first row (bin 6000-5800 
BP) 
rownames(Sum200_2) <- 1:27 ### Renumber row names so we can 
properly subtract 
Sum200 <- Sum200[-c(28),] ### Remove the last row (year bin 600-
400BP) 
SboxDif200 <- Sum200_2 - Sum200 ### younger SPD values (starting 
with 5600BP) - older SPD values, so positive numbers will 
demonstrate SPD increase, and negative will be decrease. 
SboxDif200<- cbind(dates,SboxDif200) ###Recombine dates with the 
SPD difference values 
SboxDif200[SboxDif200 == 0] <- NA ### All first difference values 
of "0" will be replaced with NA 
remove(Sum200) #Clean up environment 
remove(Sum200_2) #Clean up environment 
remove(dates) #Clean up environment 
write.csv(SboxDif200, "SboxDif200.csv", row.names = FALSE) 
##Write to a csv. 
 
#### 6. Calculate mean and median first difference values, then 
add to directory ---- 
 
##Let's start with 50 year time scale 
NegDif50 <- as.data.frame(apply(SboxDif50,  MARGIN = c(1,2), 
function(x) {ifelse(x < 0, NA, x)})) ###Create a dataframe of all 
positive first difference values 
PosDif50 <- as.data.frame(apply(SboxDif50,  MARGIN = c(1,2), 
function(x) {ifelse(x > 0, NA, x)})) ###Create a dataframe of all 
negative first difference values. 
 
###This code calculates average mean amplitude, median amplitude, 
mean positive first difference values, median positive first 
difference values, mean negative first difference values, and 
median negative first difference values. 
amp50<- as.data.frame(cbind(colnames(SboxDif50),  
                             colMeans(abs(SboxDif50), na.rm = 
TRUE),  
                             
colMedians(as.matrix(abs(SboxDif50)), na.rm = TRUE),  
                             colMeans(PosDif50, na.rm = TRUE),  
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                             colMedians(as.matrix(PosDif50), 
na.rm = TRUE),  
                             colMeans(NegDif50, na.rm = TRUE),  
                             colMedians(as.matrix(NegDif50), 
na.rm = TRUE)))  
colnames(amp50) <- c("Sbox", "amp50", "mamp50", "posamp50", 
"mposamp50", "negamp50", "mnegamp50") ###Rename column headings 
to clarify 
 
amp50$amp50 <- as.numeric(as.character(amp50$amp50)) ##Convert 
the column from factors to non-integer numbers 
amp50$mamp50 <- as.numeric(as.character(amp50$mamp50))  
amp50$invamp50 <- sapply(amp50$amp50, FUN=function(x) 1/x) ##Take 
the inverse of the mean amplitude values to represent mean 
stability 
amp50$minvamp50 <- sapply(amp50$mamp50, FUN=function(x) 1/x) 
##Take the inverse of the median amplitude values 
amp50 <- amp50[-c(1),] #Get rid of the dates row 
amp50$Sbox <- sub('X', '', amp50$Sbox)  
 
Directory <- merge(Directory, amp50, by.x = "Sbox", by.y = 
"Sbox") ##Merge all of our stability measurements to the 
directory. 
 
###And then move to the 100 year time scale 
NegDif100 <- as.data.frame(apply(SboxDif100,  MARGIN = c(1,2), 
function(x) {ifelse(x < 0, NA, x)})) ###Create a dataframe of all 
positive first difference values 
PosDif100 <- as.data.frame(apply(SboxDif100,  MARGIN = c(1,2), 
function(x) {ifelse(x > 0, NA, x)})) ###Create a dataframe of all 
negative first difference values. 
 
###This code calculates average mean amplitude, median amplitude, 
mean positive first difference values, median positive first 
difference values, mean negative first difference values, and 
median negative first difference values. 
amp100<- as.data.frame(cbind(colnames(SboxDif100),  
                             colMeans(abs(SboxDif100), na.rm = 
TRUE),  
                             
colMedians(as.matrix(abs(SboxDif100)), na.rm = TRUE),  
                             colMeans(PosDif100, na.rm = TRUE),  
                             colMedians(as.matrix(PosDif100), 
na.rm = TRUE),  
                             colMeans(NegDif100, na.rm = TRUE),  
                             colMedians(as.matrix(NegDif100), 
na.rm = TRUE)))  
colnames(amp100) <- c("Sbox", "amp100", "mamp100", "posamp100", 
"mposamp100", "negamp100", "mnegamp100") ###Rename column 
headings to clarify 
 
amp100$amp100 <- as.numeric(as.character(amp100$amp100)) 
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##Convert the column from factors to non-integer numbers 
amp100$mamp100 <- as.numeric(as.character(amp100$mamp100))  
amp100$invamp100 <- sapply(amp100$amp100, FUN=function(x) 1/x) 
##Take the inverse of the mean amplitude values to represent mean 
stability 
amp100$minvamp100 <- sapply(amp100$mamp100, FUN=function(x) 1/x) 
##Take the inverse of the median amplitude values 
amp100 <- amp100[-c(1),] #Get rid of the dates row 
amp100$Sbox <- sub('X', '', amp100$Sbox)  
 
Directory <- merge(Directory, amp100, by.x = "Sbox", by.y = 
"Sbox") ##Merge all of our stability measurements to the 
directory. 
 
 
###Finally 200 year time scale 
NegDif200 <- as.data.frame(apply(SboxDif200,  MARGIN = c(1,2), 
function(x) {ifelse(x < 0, NA, x)})) ###Create a dataframe of all 
positive first difference values 
PosDif200 <- as.data.frame(apply(SboxDif200,  MARGIN = c(1,2), 
function(x) {ifelse(x > 0, NA, x)})) ###Create a dataframe of all 
negative first difference values. 
 
###This code calculates average mean amplitude, median amplitude, 
mean positive first difference values, median positive first 
difference values, mean negative first difference values, and 
median negative first difference values. 
amp200<- as.data.frame(cbind(colnames(SboxDif200),  
                             colMeans(abs(SboxDif200), na.rm = 
TRUE),  
                             
colMedians(as.matrix(abs(SboxDif200)), na.rm = TRUE),  
                             colMeans(PosDif200, na.rm = TRUE),  
                             colMedians(as.matrix(PosDif200), 
na.rm = TRUE),  
                             colMeans(NegDif200, na.rm = TRUE),  
                             colMedians(as.matrix(NegDif200), 
na.rm = TRUE)))  
colnames(amp200) <- c("Sbox", "amp200", "mamp200", "posamp200", 
"mposamp200", "negamp200", "mnegamp200") ###Rename column 
headings to clarify 
 
amp200$amp200 <- as.numeric(as.character(amp200$amp200)) 
##Convert the column from factors to non-integer numbers 
amp200$mamp200 <- as.numeric(as.character(amp200$mamp200))  
amp200$invamp200 <- sapply(amp200$amp200, FUN=function(x) 1/x) 
##Take the inverse of the mean amplitude values to represent mean 
stability 
amp200$minvamp200 <- sapply(amp200$mamp200, FUN=function(x) 1/x) 
##Take the inverse of the median amplitude values 
amp200 <- amp200[-c(1),] #Get rid of the dates row 
amp200$Sbox <- sub('X', '', amp200$Sbox)  
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Directory <- merge(Directory, amp200, by.x = "Sbox", by.y = 
"Sbox") ##Merge all of our stability measurements to the 
directory. 
 
 
####Finally, let's export that directory to reference is later. 
setwd("~/R/THESIS_2/") 
write.csv(Directory, "Directory_Sbox.csv", row.names = FALSE) 
 
rm(list=ls()) 
 
#### 7. Let's begin the analysis.  ---- 
##First, you will need to open your Directory CSV and add 
agriculture values (0,1). Then load it below. 
 
setwd("~/R/THESIS_2/") 
Directory <- read.csv("Directory_Sbox.csv") 
 
cbbPalette <- c("#56B4E9", "#D55E00") 
labels <- c("0" = "Hunter-Gatherers", "1" = "Agriculturalists") 
 
###  7.1 Look at all SPDs at once. 50-year below, change 50 to 
100 and 200 to see those instead. ---- 
setwd("~/R/THESIS_2/2_Sbox_Bins/") 
Sum50 <- read.csv("SboxSum50.csv") 
Sum100 <- read.csv("SboxSum100.csv") 
Sum200 <- read.csv("SboxSum200.csv") 
 
Sum50long <- melt.data.frame(Sum50, id=c("dates")) 
Sum100long <- melt.data.frame(Sum100, id=c("dates")) 
Sum200long <- melt.data.frame(Sum200, id=c("dates")) 
 
Sum50long$variable <- gsub('X', 'Sbox ', Sum50long$variable) 
Sum100long$variable <- gsub('X', 'Sbox ', Sum100long$variable) 
Sum200long$variable <- gsub('X', 'Sbox ', Sum200long$variable) 
 
dir.create("~/R/THESIS_2/4_SPDs/") 
setwd("~/R/THESIS_2/4_SPDs/") 
 
#50 year first 
 
p.list = lapply(sort(unique(Sum50long$variable)), function(i) { 
    ggplot(Sum50long[Sum50long$variable==i,], aes((dates), 
(value))) + 
    geom_line(show.legend=FALSE) + 
    theme_bw() + 
    theme(axis.text = element_text(angle=45, size=12, colour = 
"black"), axis.title=element_text(size=18))+ 
    labs(x = "Cal years BP", y="Summed probability")+ 
    ggtitle(paste(i, "SPD"))+ 
    #geom_point(colour= ifelse(value < value, "red", "blue"))+ 
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    #geom_hline(yintercept = mean(value))+ 
    scale_x_reverse(breaks = seq(500,6000,500)) 
    #geom_vline(aes(xintercept=650, colour= "red"), 
linetype="solid", show.legend = FALSE) 
}) 
 
p.list ##View your SPDs 
 
pdf("Sum50_200.pdf", width = 6, height = 3) ##Export them as a 
pdf. 
p.list  
dev.off() 
 
#Now let's do 100 year time scale. 
p.list = lapply(sort(unique(Sum100long$variable)), function(i) { 
  ggplot(Sum100long[Sum100long$variable==i,], aes((dates), 
(value))) + 
    geom_line(show.legend=FALSE) + 
    theme_bw() + 
    theme(axis.text = element_text(angle=45, size=12, colour = 
"black"), axis.title=element_text(size=18))+ 
    labs(x = "Cal years BP", y="Summed probability")+ 
    ggtitle(paste(i, "SPD"))+ 
    #geom_point(colour= ifelse(value < value, "red", "blue"))+ 
    #geom_hline(yintercept = mean(value))+ 
    scale_x_reverse(breaks = seq(500,6000,500)) 
}) 
p.list 
 
pdf("SboxSum100.pdf", width = 6, height = 3) ##Export them as a 
pdf. 
p.list  
dev.off() 
 
 
#Finally, 200 year time scale. 
p.list = lapply(sort(unique(Sum200long$variable)), function(i) { 
  ggplot(Sum200long[Sum200long$variable==i,], aes((dates), 
(value))) + 
    geom_line(show.legend=FALSE) + 
    theme_bw() + 
    theme(axis.text = element_text(angle=45, size=12, colour = 
"black"), axis.title=element_text(size=18))+ 
    labs(x = "Cal years BP", y="Summed probability")+ 
    ggtitle(paste(i, "SPD"))+ 
    #geom_point(colour= ifelse(value < value, "red", "blue"))+ 
    #geom_hline(yintercept = mean(value))+ 
    scale_x_reverse(breaks = seq(500,6000,500)) 
}) 
p.list 
 
pdf("SboxSum200.pdf", width = 6, height = 3) ##Export them as a 
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pdf. 
p.list  
dev.off() 
 
 
###  7.2 Make histograms ---- 
setwd("~/R/THESIS_2/3_FirstDiff/") 
SboxDif50 <- read.csv ("SboxDif50.csv") 
SboxDif100 <- read.csv ("SboxDif100.csv") 
SboxDif200 <- read.csv ("SboxDif200.csv") 
 
colnames(SboxDif50) <- gsub(x=colnames(SboxDif50), pattern= "X", 
replacement = "") 
colnames(SboxDif100) <- gsub(x=colnames(SboxDif100), pattern= 
"X", replacement = "") 
colnames(SboxDif200) <- gsub(x=colnames(SboxDif200), pattern= 
"X", replacement = "") 
 
Dif50long <- melt.data.frame(SboxDif50, id.vars = c("dates")) 
Dif100long <- melt.data.frame(SboxDif100, id.vars = c("dates")) 
Dif200long <- melt.data.frame(SboxDif200, id.vars = c("dates")) 
 
Dif50long <- merge.data.frame(x=na.omit(Dif50long), 
y=Directory[,c("Sbox", "ag")], by.x= "variable", by.y = "Sbox") 
Dif100long <- merge.data.frame(x=na.omit(Dif100long), 
y=Directory[,c("Sbox", "ag")], by.x= "variable", by.y = "Sbox") 
Dif200long <- merge.data.frame(x=na.omit(Dif200long), 
y=Directory[,c("Sbox", "ag")], by.x= "variable", by.y = "Sbox") 
 
write.csv(Dif50long, "Dif50long.csv", row.names = FALSE) 
write.csv(Dif100long, "Dif100long.csv", row.names = FALSE) 
write.csv(Dif200long, "Dif200long.csv", row.names = FALSE) 
 
Dif50long <- read.csv ("Dif50long.csv") 
Dif100long <- read.csv ("Dif100long.csv") 
Dif200long <- read.csv ("Dif200long.csv") 
 
##Table Organization out of the way, let's view the histograms! 
As always, 50 year scale first. 
 
mu<-ddply(Dif50long, "ag", summarise, grp.mean=mean(abs(value))) 
me<-ddply(Dif50long, "ag", summarise, 
grp.median=median(abs(value))) 
sd<-ddply(Dif50long, "ag", summarise, grp.sd=sd(abs(value))) 
 
p<-ggplot(Dif50long, aes(x=(abs(value)), fill=factor(ag))) + 
  geom_density(adjust=1, alpha=1,  position = "identity")+ 
  geom_rug(aes(x =(abs(value)) , y = 0), position = 
position_jitter(height = 0))+ 
  geom_vline(data=mu, aes(xintercept=grp.mean), 
             linetype="dashed", show.legend = FALSE)+ 
  geom_vline(data=me, aes(xintercept=grp.median), 
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             linetype="solid", show.legend = FALSE)+ 
  theme_bw() + 
  scale_fill_manual(name="First Difference", labels = c("Hunter-
Gatherers", "Agriculturalists"), values = cbbPalette)+ 
  labs(x="Absolute Value of 50 Year First Difference Values", y = 
"Density")+ 
  theme(legend.position="top")+ 
  facet_grid(factor(ag)~.) 
p 
 
jpeg("Sbox50_invamp.jpeg", width=912, height=390) 
p 
dev.off() 
 
mu 
me 
sd 
 
###100 year next 
mu<-ddply(Dif100long, "ag", summarise, grp.mean=mean(abs(value))) 
me<-ddply(Dif100long, "ag", summarise, 
grp.median=median(abs(value))) 
sd<-ddply(Dif100long, "ag", summarise, grp.sd=sd(abs(value))) 
 
p<-ggplot(Dif100long, aes(x=(abs(value)), fill=factor(ag))) + 
  geom_density(adjust=1, alpha=1,  position = "identity")+ 
  geom_rug(aes(x =(abs(value)) , y = 0), position = 
position_jitter(height = 0))+ 
  geom_vline(data=mu, aes(xintercept=grp.mean), 
             linetype="dashed", show.legend = FALSE)+ 
  geom_vline(data=me, aes(xintercept=grp.median), 
             linetype="solid", show.legend = FALSE)+ 
  theme_bw() + 
  scale_fill_manual(name="First Difference", labels = c("Hunter-
Gatherers", "Agriculturalists"), values = cbbPalette, 
guide=FALSE)+ 
  labs(x="Absolute Value of 100 Year First Difference Values", y 
= "Density")+ 
  theme(legend.position="top")+ 
  facet_grid(factor(ag)~.) 
p 
 
jpeg("Sbox100_invamp.jpeg", width=912, height=345) 
p 
dev.off() 
 
mu 
me 
sd 
 
###200 year last 
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mu<-ddply(Dif200long, "ag", summarise, grp.mean=mean(abs(value))) 
me<-ddply(Dif200long, "ag", summarise, 
grp.median=median(abs(value))) 
sd<-ddply(Dif200long, "ag", summarise, grp.sd=sd(abs(value))) 
 
p<-ggplot(Dif200long, aes(x=(abs(value)), fill=factor(ag))) + 
  geom_density(adjust=1, alpha=1,  position = "identity")+ 
  geom_rug(aes(x =(abs(value)) , y = 0), position = 
position_jitter(height = 0))+ 
  geom_vline(data=mu, aes(xintercept=grp.mean), 
             linetype="dashed", show.legend = FALSE)+ 
  geom_vline(data=me, aes(xintercept=grp.median), 
             linetype="solid", show.legend = FALSE)+ 
  theme_bw() + 
  scale_fill_manual(name="First Difference", labels = c("Hunter-
Gatherers", "Agriculturalists"), values = cbbPalette, 
guide=FALSE)+ 
  labs(x="Absolute Value of 200 Year First Difference Values", y 
= "Density")+ 
  theme(legend.position="top")+ 
  facet_grid(factor(ag)~.) 
p 
 
jpeg("Sbox200_invamp.jpeg", width=912, height=345) 
p 
dev.off() 
 
mu 
me 
sd 
 
 
##### 7.21 Let's do positive population changes next 
Dif50long_pos <- subset(Dif50long, value >0) ###Uncomment to view 
only population increases. Change > to < to view only decreases. 
 
mu<-ddply(Dif50long_pos, "ag", summarise, 
grp.mean=mean(abs(value))) 
me<-ddply(Dif50long_pos, "ag", summarise, 
grp.median=median(abs(value))) 
sd<-ddply(Dif50long_pos, "ag", summarise, grp.sd=sd(abs(value))) 
 
p<-ggplot(Dif50long_pos, aes(x=(abs(value)), fill=factor(ag))) + 
  geom_density(adjust=1, alpha=1,  position = "identity")+ 
  geom_rug(aes(x =(abs(value)) , y = 0), position = 
position_jitter(height = 0))+ 
  geom_vline(data=mu, aes(xintercept=grp.mean), 
             linetype="dashed", show.legend = FALSE)+ 
  geom_vline(data=me, aes(xintercept=grp.median), 
             linetype="solid", show.legend = FALSE)+ 
  theme_bw() + 
  scale_fill_manual(name="First Difference", labels = c("Hunter-
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Gatherers", "Agriculturalists"), values = cbbPalette)+ 
  labs(x="Positive 50 Year First Difference Values (Booms)", y = 
"Density")+ 
  theme(legend.position="top")+ 
  facet_grid(factor(ag)~.) 
p 
 
jpeg("Sbox50_posamp.jpeg", width=912, height=390) 
p 
dev.off() 
 
mu 
me 
sd 
 
###100 year next 
Dif100long_pos <- subset(Dif100long, value >0) ###Uncomment to 
view only population increases. Change > to < to view only 
decreases. 
 
mu<-ddply(Dif100long_pos, "ag", summarise, 
grp.mean=mean(abs(value))) 
me<-ddply(Dif100long_pos, "ag", summarise, 
grp.median=median(abs(value))) 
sd<-ddply(Dif100long_pos, "ag", summarise, grp.sd=sd(abs(value))) 
 
p<-ggplot(Dif100long_pos, aes(x=(abs(value)), fill=factor(ag))) + 
  geom_density(adjust=1, alpha=1,  position = "identity")+ 
  geom_rug(aes(x =(abs(value)) , y = 0), position = 
position_jitter(height = 0))+ 
  geom_vline(data=mu, aes(xintercept=grp.mean), 
             linetype="dashed", show.legend = FALSE)+ 
  geom_vline(data=me, aes(xintercept=grp.median), 
             linetype="solid", show.legend = FALSE)+ 
  theme_bw() + 
  scale_fill_manual(name="First Difference", labels = c("Hunter-
Gatherers", "Agriculturalists"), values = cbbPalette, 
guide=FALSE)+ 
  labs(x="Positive 100 Year First Difference Values (Booms)", y = 
"Density")+ 
  theme(legend.position="top")+ 
  facet_grid(factor(ag)~.) 
p 
 
jpeg("Sbox100_posamp.jpeg", width=912, height=345) 
p 
dev.off() 
 
mu 
me 
sd 
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###200 year last 
Dif200long_pos <- subset(Dif200long, value >0) ###Uncomment to 
view only population increases. Change > to < to view only 
decreases. 
 
mu<-ddply(Dif200long_pos, "ag", summarise, 
grp.mean=mean(abs(value))) 
me<-ddply(Dif200long_pos, "ag", summarise, 
grp.median=median(abs(value))) 
sd<-ddply(Dif200long_pos, "ag", summarise, grp.sd=sd(abs(value))) 
 
p<-ggplot(Dif200long_pos, aes(x=(abs(value)), fill=factor(ag))) + 
  geom_density(adjust=1, alpha=1,  position = "identity")+ 
  geom_rug(aes(x =(abs(value)) , y = 0), position = 
position_jitter(height = 0))+ 
  geom_vline(data=mu, aes(xintercept=grp.mean), 
             linetype="dashed", show.legend = FALSE)+ 
  geom_vline(data=me, aes(xintercept=grp.median), 
             linetype="solid", show.legend = FALSE)+ 
  theme_bw() + 
  scale_fill_manual(name="First Difference", labels = c("Hunter-
Gatherers", "Agriculturalists"), values = cbbPalette, 
guide=FALSE)+ 
  labs(x="Positive 200 Year First Difference Values (Booms)", y = 
"Density")+ 
  theme(legend.position="top")+ 
  facet_grid(factor(ag)~.) 
p 
 
jpeg("Sbox200_posamp.jpeg", width=912, height=345) 
p 
dev.off() 
 
mu 
me 
sd 
 
 
##### 7.22 Negative now. 
Dif50long_neg <- subset(Dif50long, value <0) ###Uncomment to view 
only population increases. Change > to < to view only decreases. 
 
mu<-ddply(Dif50long_neg, "ag", summarise, 
grp.mean=mean(abs(value))) 
me<-ddply(Dif50long_neg, "ag", summarise, 
grp.median=median(abs(value))) 
sd<-ddply(Dif50long_neg, "ag", summarise, grp.sd=sd(abs(value))) 
 
p<-ggplot(Dif50long_neg, aes(x=(abs(value)), fill=factor(ag))) + 
  geom_density(adjust=1, alpha=1,  position = "identity")+ 
  geom_rug(aes(x =(abs(value)) , y = 0), position = 
position_jitter(height = 0))+ 
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  geom_vline(data=mu, aes(xintercept=grp.mean), 
             linetype="dashed", show.legend = FALSE)+ 
  geom_vline(data=me, aes(xintercept=grp.median), 
             linetype="solid", show.legend = FALSE)+ 
  theme_bw() + 
  scale_fill_manual(name="First Difference", labels = c("Hunter-
Gatherers", "Agriculturalists"), values = cbbPalette)+ 
  labs(x="Negative 50 Year First Difference Values (Busts)", y = 
"Density")+ 
  theme(legend.position="top")+ 
  facet_grid(factor(ag)~.) 
p 
 
jpeg("Sbox50_negamp.jpeg", width=912, height=390) 
p 
dev.off() 
 
mu 
me 
sd 
 
###100 year next 
Dif100long_neg <- subset(Dif100long, value <0) ###Uncomment to 
view only population increases. Change > to < to view only 
decreases. 
 
mu<-ddply(Dif100long_neg, "ag", summarise, 
grp.mean=mean(abs(value))) 
me<-ddply(Dif100long_neg, "ag", summarise, 
grp.median=median(abs(value))) 
sd<-ddply(Dif100long_neg, "ag", summarise, grp.sd=sd(abs(value))) 
 
p<-ggplot(Dif100long_neg, aes(x=(abs(value)), fill=factor(ag))) + 
  geom_density(adjust=1, alpha=1,  position = "identity")+ 
  geom_rug(aes(x =(abs(value)) , y = 0), position = 
position_jitter(height = 0))+ 
  geom_vline(data=mu, aes(xintercept=grp.mean), 
             linetype="dashed", show.legend = FALSE)+ 
  geom_vline(data=me, aes(xintercept=grp.median), 
             linetype="solid", show.legend = FALSE)+ 
  theme_bw() + 
  scale_fill_manual(name="First Difference", labels = c("Hunter-
Gatherers", "Agriculturalists"), values = cbbPalette, 
guide=FALSE)+ 
  labs(x="Negative 100 Year First Difference Values (Busts)", y = 
"Density")+ 
  theme(legend.position="top")+ 
  facet_grid(factor(ag)~.) 
p 
 
jpeg("Sbox100_negamp.jpeg", width=912, height=345) 
p 
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dev.off() 
 
mu 
me 
sd 
 
###200 year last 
Dif200long_neg <- subset(Dif200long, value <0) ###Uncomment to 
view only population increases. Change > to < to view only 
decreases. 
 
mu<-ddply(Dif200long_neg, "ag", summarise, 
grp.mean=mean(abs(value))) 
me<-ddply(Dif200long_neg, "ag", summarise, 
grp.median=median(abs(value))) 
sd<-ddply(Dif200long_neg, "ag", summarise, grp.sd=sd(abs(value))) 
 
p<-ggplot(Dif200long_neg, aes(x=(abs(value)), fill=factor(ag))) + 
  geom_density(adjust=1, alpha=1,  position = "identity")+ 
  geom_rug(aes(x =(abs(value)) , y = 0), position = 
position_jitter(height = 0))+ 
  geom_vline(data=mu, aes(xintercept=grp.mean), 
             linetype="dashed", show.legend = FALSE)+ 
  geom_vline(data=me, aes(xintercept=grp.median), 
             linetype="solid", show.legend = FALSE)+ 
  theme_bw() + 
  scale_fill_manual(name="First Difference", labels = c("Hunter-
Gatherers", "Agriculturalists"), values = cbbPalette, 
guide=FALSE)+ 
  labs(x="Negative 200 Year First Difference Values (Busts)", y = 
"Density")+ 
  theme(legend.position="top")+ 
  facet_grid(factor(ag)~.) 
p 
 
jpeg("Sbox200_negamp.jpeg", width=912, height=345) 
p 
dev.off() 
 
mu 
me 
sd 
 
##### Scatter Log N vs. invamp ----- 
dir.create("~/R/THESIS_2/7_lognCheck/") 
setwd("~/R/THESIS_2/7_lognCheck/") 
 
q <- ggplot(data=Directory, aes(x=(invamp200), y=log(n)))+ 
  theme_bw() + 
  #aes(shape=factor(ag), colour=factor(ag))+ 
  #scale_colour_manual("", labels=c("Hunter-
Gatherer","Agriculturalists" ), values= cbbPalette)+ 
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  #scale_shape_manual("", labels=c( "Hunter-Gatherer", 
"Agriculturalists"), values= c(16,17))+ 
  geom_point(size=2.5) +  
  theme(axis.text = element_text(size = rel(1.9), colour = 
"black"), axis.title=element_text(size=16))+ 
  labs(x = "200 Year Mean Population Stability", y="Logged Number 
of 14C dates")+ 
  geom_smooth(method="lm")+ 
  theme(legend.position = c(0.14, 8)) 
#facet_wrap(~(ew)) 
q 
 
stab<-lm((minvamp200)~log(n), data=Directory) 
summary(stab) 
 
jpeg("200invamp_n.jpeg", width=656, height=440) 
q 
dev.off() 
 
 
##### Model ------ 
dir.create("~/R/THESIS_2/6_SI/") 
setwd("~/R/THESIS_2/6_model/") 
 
library(psych) 
library(gmodels) 
 
df <- read.csv("model_base.csv") 
 
df2<- replicate(1000, sample((0:1),40,replace=T)) 
 
df<- cbind(df, df2) 
 
results50 <- lapply(df[6:1005],function(x) 
wilcox.test(invamp50~x, data=df, alternative = "two.sided")) 
results50_1 <- 
do.call(cbind,lapply(results50,function(v){v$p.value})) 
results50_2 <- as.data.frame(rbind(results50_1,df2)) 
results50_1 <- 
as.list(do.call(cbind,lapply(results50,function(v){v$p.value}))) 
 
results100 <- lapply(df[6:1005],function(x) 
wilcox.test(invamp100~x, data=df, alternative = "two.sided")) 
results100_1 <- 
do.call(cbind,lapply(results100,function(v){v$p.value})) 
results100_2 <- as.data.frame(rbind(results100_1,df2)) 
results100_1<- 
as.list(do.call(cbind,lapply(results100,function(v){v$p.value}))) 
 
results200 <- lapply(df[6:1005],function(x) 
wilcox.test(invamp200~x, data=df, alternative = "two.sided")) 
results200_1 <- 
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do.call(cbind,lapply(results200,function(v){v$p.value})) 
results200_2 <- as.data.frame(rbind(results200_1,df2)) 
results200_1 <- 
as.list(do.call(cbind,lapply(results200,function(v){v$p.value}))) 
 
result_50 <- data.frame(matrix(nrow = 3, ncol = 2)) 
result_100 <- data.frame(matrix(nrow = 3, ncol = 2)) 
result_200 <- data.frame(matrix(nrow = 3, ncol = 2)) 
 
for (i in 1:1000){ 
  if(results200_1[i] <= 0.05){ 
    staty <- Yule(table(df2[,i],df[,2])) 
    result_200[i, 1] <- i 
    result_200[i, 2] <- staty 
  } 
} 
 
result_200 <- na.omit(result_200) 
 
 
for (i in 1:1000){ 
  if(results100_1[i] <= 0.05){ 
    staty <- Yule(table(df2[,i],df[,2])) 
    result_100[i, 1] <- i 
    result_100[i, 2] <- staty 
  } 
} 
 
result_100 <- na.omit(result_100) 
 
 
for (i in 1:1000){ 
  if(results50_1[i] <= 0.05){ 
    staty <- Yule(table(df2[,i],df[,2])) 
    result_50[i, 1] <- i 
    result_50[i, 2] <- staty 
  } 
} 
 
result_50 <- na.omit(result_50) 
 
write.csv(result_50, "result50.csv", row.names = FALSE) 
write.csv(result_100, "result100.csv",  row.names = FALSE) 
write.csv(result_200, "result200.csv",  row.names = FALSE) 
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Appendix II: Summed Probability Distributions (SPDs) 

At the 50-year time scale: 
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At the 100-year time scale: 
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At the 200-year time scale: 
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